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Z n Baxter Model: Symmetries and the 
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The 2 n Baxter model is an exactly solvable lattice model in the special case of 
the Belavin parametrization. For this parametrization we calculate the partition 
function, x, in an antiferromagnetic region and the order parameter in a 
ferromagnetic region. We find that the order parameter is expressible in terms of 
a modular function of level n which for n = 2 is the Onsager-Yang-Baxter result. 
In addition we determine the symmetry group of the finite lattice partition 
function for the general Z~ Baxter model. 
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1. I N T R O D U C T I O N  

One possible n-state generalization of Baxter's eight vertex model (1) is the 
completely Z.  symmetric vertex model first introduced by Belavin (6t and by 
Chudnovsky and Chudnovsky3 9) If S~/denotes the Boltzmann weight for a 
single vertex with bond states i, j, k, l E 77 n (see Fig. 1 ), then the vertex 
model is said to be completely 2 n symmetric if 

and 

(i) S~t=O unlessi+j=k+lmodn 

(ii) ~k+pl+p__ kl --i+p j + p - S o  for every i, j, k, l, p e 2n 

and addition is defined mod n 
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i k 

Fig. 1. The vertex configuration i,j ,k, 
i j l~7/~ with Boltzmann weight S~( 

For n = 2 this is Baxter's eight-vertex model; thus, we call the completely 
7 / symmet r i c  vertex model the 7/n Baxter model. Observe that (for n > 2) 
rotation by 90 ~ violates Z n symmetry. 

Belavin (6) introduced a parametrization of Sk/which for n = 2 reduces 
to Baxter's parametrization of the Boltzmann weights in terms of Jacobi 
theta functions. Belavin conjectured that his parametrization satisfies the 
Yang-Baxter equations (j'3'22) which was subsequently verified in Refs. 7, 8, 
and 20. Thus one might reasonably expect that this special 7/n Baxter 
model is exactly solvable in the sense that the free energy per site and the 
order parameters are exactly computable. It is the purpose of this paper to 
begin this program. 

In Section 2 we summarize the relevant results needed from the 
Heisenberg group and its relation to Jacobi theta functions. We believe 
that this point of view provides a natural understanding of the role of theta 
functions in the 2~ Baxter model. ~9'2~ 

In Section 3 we analyze the Belavin parametrization of the Boltzmann 
weights. In particular we give a product representation which gives a 
clearer picture of some of the properties of this parametrization. From this 
representation we are unable to find any region (for n > 2) where all the 
Boltzmann weights are positive, nor can a simple "gauge transformation" 
on S~ t that preserves the 7/, symmetry lead to positive regions. We should 
say that this nonpositivity has been checked on various lines but that does 
not rule out some "nonstandard" region having the desired physical 
property. In any case our calculations are performed in unphysical regions. 

In Section 4 we determine the symmetry group for the partition 
function for the 7 /  model. Our proof is a generalization of the Johnson, 
Krinsky, McCoy proof (12) of the Fan and Wu (1~ symmetries for n = 2. Our 
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results for n = 2 along with the 90 ~ rotational symmetry valid for n = 2 
reduce to the results of Fan and Wu. (~~ This section should have indepen- 
dent interest since the Belavin restriction is not assumed. 

In Section 5 we derive inversion relations for the Baxter face operators 
Ui and Vi assuming the Belavin parametrization. We stress that the Vi 
inversion relation must be independently derived since the lack of 
rotational symmetry through 90 ~ does not allow one to obtain the Vi 
inversion relation from the Ui inversion relation (except, of course, for 
n = 2 ) .  

In Section 6 the partition function per site in the thermodynamic limit, 
to, is derived using the inversion relations of Section 5 and Baxter's matrix 
inversion techniques for the region where S~- 1 ,,-1~ is dominant. For  n = 2 
our results reduce to Baxter's partition function for the eight-vertex model, 
and for general n and q--* 0 our K reduces to the ~c derived by Babelon, de 
Vega, and Viallet ~5) using the method of nested Bethe ansatz (see 
Schultz (19) for further analysis of the nested Bethe ansatz). 

In Section 7 the order parameters, (a~},  in the ferromagnetic region 
are computed using Baxter's method of corner transfer matrices. (2,3) Here a 
is the dual spin variable whose values are nth roots of unity. Our principal 
result is that these (ak},  k =  1,..., n - 1 ,  are expressible in terms of elliptic 
modular functions of level n which for n = 2 reduces to the Onsager-Yang- 
Baxter spontaneous magnetization. ~7,2~,2,3) From our formulas for (ak}  we 
derive for k = 0  ..... n -  1 (assuming (~rk} is an expected value) 

P rob (a=co  ~)=~0(q) ~ p(m)qm 
m ~. k ( n )  

m >~O 

where ~o = exp(2~i/n), ~o(q) = Y[9_ 1 (1 - ql), and p(m) is the number of par- 
titions of m. For  0 < q <  1 we show that Z n- k--~ Prob(a = ~ k ) =  1, 
Prob(a=~o k)~6k,o as q ~ 0 ,  P rob (a=co  k)--*l/n as q ~ l ,  and 0 <  
Prob(a  = ~o k) < 1. Thus, even though our calculations are performed in an 
unphysical region, the quantities Prob(a  = co k) do have the interpretation 
as probabilities. For  special values o f  n and k the above partition theoretic 
sum has been extensively studied by Ramanujan and others (see, e.g., 
Knopp(~3)). 

2. HEISENBERG GROUP A N D  THETA FUNCTIONS 

To establish notation and for the convenience of the reader, we sum- 
marize those results needed in the following sections concerning the 
Heisenberg group and theta functions. Our principal references are 
Mumford (16) and Krazer. (14) 
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Let H = {z ~ c I Im z > 0} be the upper half-plane, A~ = 
{ ~ z  + {2 [ {~, {2 e Z, z e H } the lattice generated by 1 and ~, and E~ = C/A~ 
the complex torus which can be identified with an elliptic curve. Let 
f :  C --+ C be an entire function and define 

(& f ) ( z )  = f ( z  + b) 

(T~ f ) ( z )  = expQtia2z + 2rciaz) f ( z  + az) 

where a, b e ~, z e IH]. Then 

and 

Sbl Sb2 : Sbl + b2 

T~,I T~2 = T~I + ~2 

Sb Ta = exp(2raab) TaSb 

The group generated by the Ta's and Sb's is the Heisenberg group 

~ - - C * x ~ x ~  (c~= {zeC I Izl =1}) 

where (Z, a, b) stands for the transformation 

( U(~,a,b) f ) ( z )  : 2( TaSb f ) ( z )  

The group law is given by 

(2, a, b)(2', a', b') = (22' exp(2rciba'), a + a', b + b') 

We will be particularly interested in the subgroups 

F =  {(1, a,b)Ef~ l a, be~_} 

nF= {(1, na, nb)eC, q I a, beY} 

f t ,=  {(4, a, b) efr I 2 e ~ 2 ,  a, be(1/n)Z/nZ} 

where ~ m  is the group of mth roots of 1. 
The Jacobi theta function 

O(z, z) = ~ exp(ramZz + 2rEimz) 
m~TZ 

= f i  (1-q2m)(l+e-2=iZq 2m ~)(l+e2~iZq 2m-1) 
m=l 

(2.1) 

(2.2) 
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with q=e =~, z~C, r e  H is, up to scalars, the unique entire function 
invariant under F. Explicitly, 

where 

The Jacobi 
defined by 

O(Z+r162 ~,~e2_ (2.3) 

ur ~) = e x p ( - ~ i ~ z  - 2~ir (2.4) 

theta functions of rational characteristics a, bs(1/n)7/ are 

O I~] (z, z)-- (gbTaO)(z) 

= exp[~iaZT + 27cia(z + b)] O(z + aT + b) 

= ~ exp[~i(m+a)ZT+27ci(m+a)(z+b)] (2.5) 
rnc~_ 

The functions 0[~](z, r), a, be (i/n)2/2 form a basis for the complex vec- 
tor space V~ of entire functions invariant under the subgroup nF. The 
action of the Heisenberg group ~n is summarized by 

I I;1) i (i) S~9 (z )=0  b+fl n 

t lal I 1 (ii) =~ b )(z)=exp(-2~ieb)O a+c~ (z,T), a ,b ,c~el2  
b n 

I;+'1 I:1 (iii) 0 (z,T)=exp(2~iaq)O (z,r), fora, b e l 2 ,  
+q n 

p, q e 2  (2.6) 

the zeros are 

(iv) O I b ] ( Z , z ) = O a t z = ( � 8 9 1 8 9  ~ 

In our analysis below on the 7/= model we find there is an interplay 
between the above Heisenberg groups and associated theta functions and 
the Heisenberg group that arises when the factor of automorphy ur ~) is 
replaced by [u~,(z, ~)]" [geometrically this corresponds to tensoring the 
line bundle defined by ur ~) with itself n times]. We define, therefore, 

(Ja, b f)(z) = exp(~ina2T + 2ninaz) f ( z  + aT + b) 
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with a, b ~ ~, f a n  entire function. Such J~,b generate the Heisenberg group 

~") = C *  x ~ x 

where the group law is now 

(2, a, b)(2', a', b') = (22' exp(2~inba'), a + a', b + b') 

Define the  subgroups 

F(~)= {(1, a, b) ~ ~(') I a, b ~ Z }  

and 

H " =  { (2' a' b)efq(~) 2 e  Jg~' a' b~ l 

Then an entire function 0 is said to be an nth order theta function of 
characteristic 0, 0 if it is invariant under F ('), i.e., 

If M.  is the complex vector space of nth order theta functions, then it is 
well known that dim M,, = n and a basis is given by O[J/~](nz, nr). In what 
follows a certain finite-dimensional representation of S,, acting on M.  will 
play a central role. First observe that Ja,b: M,  ~ M.  if a, b e  (1/n)2~. It can 
be shown that this representation of ~ is irreducible. 

There exists a vector O e M, such that 

Jo,1/n 0 -- 0 

[take Otz~ - r l n -  1 J -  1 lj=0 O[j~n](z, ~)]. The existence 
canonical construction of a basis for M,,. Define 

of such O permits a 

and observe that 

Oj=Jj/~,o O, j = 0 ,  1 ..... n -  1 

Jl/n,oOj = Oj§ l 

Jo , , / . o j  =  o,oj 

where (a=exp(2~i/n).  We call (Oj};~~ the Bianchi basis for Mn. 
In terms of coordinates we choose the standard basis {ej};~ ~. of C" 

and define n x n matrices h and g by 

he;=ej+ l, ge;=c&e;, j ~  7/ (2.7) 
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If  we denote  by G,  = 77 x 77, ( ~ , / 3 )  = el/32 - c%/3,, and define 

/~  = U l g  :'2 , ~ =  (~1 ,  ~ 2 ) E G ~  (2.8) 

then 

I~ 18 = co:'28~I~ + 8 = co <8,~ >18 I:, (2.9) 

is a representat ion of the Heisenberg group  

H ~ =  {(2, c~)12eJCd . ,  c~eGn} 

which is essentially Jd~. T h r o u g h o u t  this paper  a complete  residue system 
for 2~ = 2/nY_ will be chosen to be {0, 1,..., n - 1 }. 

In any discussion of E~ it is na tura l  to ask what  happens  when dif- 
ferent generators  are used to generate the lattice A,. Thus let c~=cqr  + c~2, 
3=31~+f i2  be elements of A, with (O:,fl)=O:lfl2--O;2fll=l. Then  any 
point  7~A~,  7 = 7 ~ r + 7 2  has coordinates  in the c~, /3 basis given by 7 =  
~ 1 ~ +  ~2fl; that  is, 

For  H n we can choose as generators  co, I~, 18 since for any I~ = hT~g ~2 we 
have I~, = (IS-'(I8)~2 x nth root  of unity. We define 

*cx*[3, 0~2 f12 6SL(2 ,  Z) (2.10) 

Then it is easy to show there exists an invertible U A ( independent  o f~)  
such that  

I~ = UAIr UA ~ (2.11) 

where, of course, Ir = hr ~2. One way to demons t ra te  this is to choose as 
the cyclic vector  the vector  xo which is the eigenvector of 18 corresponding 
to the eigenvalue 1. Then, as above,  form x j =  (I~)JXo . The matr ix  UA is 
then the change of basis matr ix  UA ej = XJ" 

The t rans format ion  of theta functions themselves is somewhat  more  
involved. Fo r  any 7 = (~ ha) ~ SL(2, 2), extend the act ion to C x H by 

c a ' c+  (2.12) 7(z, "c)= z _~) 
r + d '  c 'c+ 
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We give the corresponding action on 0[~](z, r) for the generators (0 ~ l) and 
(o ~) of SL(2, 7/): 

(4) 0 L�89 (z' r+  1)=exp exp(-~ria=)O �89 

and 

~9[�89189 z [ 2 r c i ( a b + ~ 2 b ) ] e x p  

[ � 8 9  (z, r) (2.14) x OL�89 j 

Here we used ~9[~{~](z, ~) only for convenience. Note that in terms of the 
characteristics �89 + a, 1 + b the action of the matrices takes a particularly 
simple form; namely, if A e SL(2, Z) then the transformation in the charac- 
teristics (a, b) is given by 'A(;). 

This action generalizes if we include translations by lattice points of 
A~. Namely, we get a semidirect product SL(2, Z ) x  2 2 which acts on 
C x H by (z, z) -* ((z + m~ + n)/(c~ + d), (a~ + b)/(c~ + d)). 

3. 7/ BAXTER M O D E L  A N D  THE BELAVIN 
P A R A M  ETRIZATION 

The Boltzmann weights S~/ define a matrix S in the standard basis 
{ei| ej}i,j~ z,, for Cnx C". This matrix is completely Zn symmetric; that is, 
S~/satisfies conditions (i) and (ii) in the Introduction or equivalently (6'9'2~ 

S-- ~ w~I~| 1 (3.1) 
~e Gn 

for some w~ c C. Thus the general 2 .  Baxter model has n 2 independent 
parameters (actually n 2 -  1 is a better count since one parameter is an 
overall normalization factor). The Belavin parametrization (6) is 

L ~ J n J  w~,(z) - , o~ e G, (3.2) 

where z, r/e C, r e  H. Observe that there are only three independent 
parameters. It will be convenient to define a new variable w ~ C by 

w 1 1 
t / = n + S r +  ~ (3.3) 
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For such a choice of w~ the resulting S matrix satisfies the Yang-Baxter 
equation (1'22~ as was first conjectured by Belavin and then later confirmed 
in Refs. 7, 8, and 20. For n = 2 the results reduce to the pioneering work of 
Baxter(l'3'4); see Ref. 20 for further details. 

ab gab Because of 2n symmetry it is sufficient to consider So, + b, or as we 
shall henceforth abbreviate. From (2.8) and (3.1) we have 

sab(z, w, r) = ~ w( a,~,)co b~, a, b �9 7/n (3.4) 

Using the transformation properties of the theta functions, a computation 
shows that for ~ �9 7/2 

w z 1 sab(z + ~l"r + ~2, w, z)=exp [--irc:~z-- 27zi~1(z +-~+~+-~) 1 

x co-~r w, z) (3.5a) 

S ' b ( z , w + ~ l r + ~ 2 ,  r )=exp( - -2rEi  ~1 ) " z cobr ~ r w,r)  (3.5b) 
/7 

We sometimes abbreviate S~b(z, w, ~) to simply S"b(z). 
We now proceed to write S ab as a product of theta functions. The plan 

will be to find the zeros and poles of S ab and use them to construct a 
product of theta functions with the same zero and pole structure. To begin, 
first note that each S ~b is entire and quasiperiodic in z on the A~ lattice. 
Specifically, 

I ( w r 1 , ]  n z z / j  S'b(z +nz, w, z ) = e x p  --Tzin2z-- 2rtin z + , + ~ + ~ |  / S'b(z, w,'r) 
(3.6) 

s'b(z + 1, W, r) = Co-~sob(z, w, v) 

It is an elementary complex analysis argument that if f is entire, not iden- 
tically zero, and satisfies 

f ( z  + z) = exp[ -27zi(A1 + A2z)] f ( z )  

f ( z  + 1) = e x p ( -  2rciB) f ( z )  

then necessarily A 2 is a positive integer, and f has A 2 z e r o s  in A~ with 

~ z e r o s = � 8 9  (rood A~) 

We apply this to S ~b to conclude there are n zeros in A~ with sum 

zeros = az - w + �89 - 1 ) (mod A,~) 
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Since w~(0)=  1 we immedia te ly  see tha t  S ~ b ( 0 ) = 0  for b ~ 0 .  F r o m  

(3.5) we have 

Sab(lv) = (mul t ip l ier )  x S~'b+;(0) = 0 for 1r -b(n)  

Thus we have loca ted  n - 1  zeros of S ~b and f rom the above  sum of zeros 

we conclude the remain ing  zero mus t  be 

z = (a - b)z - w (A, , )  

Define 

O , b ( z ) = e  i~O ( - a +  )In+�89 (z+w,  nz) ;1 (z, nz) (3.7) 
k=O L 
kTZb 

then ~ b  has the same zeros (in z) as S ~b and  has the same t rans format ion  
proper t ies  (3.6). Thus 

S~b(~, w, ~) = c~b(w, ~) ~ab(~) (3.8) 
To determine  c~b(w, z) we evaluate  S "b and O~b at z = -hr .  F r o m  (3.5) 

[ (w 1)] 
Sab(-b~, w, z )=exp  -brbZ~ + 2~zib n+-~+-~ n (3.9a) 

and  

0ob(-b~):e'~b~f(-a+~ )/n+~ ~w-b~,,~/ ,~ ~ (-b~,~zl 
L 2 k = O  

k ~ b  

= e x p  - i ~ b 2 z + 2 ~ i b  n + + oq 

x [I 0 (0, n~) (3.9b) 
k = l  L 2 A 

C o m p a r i n g  (3.8) with (3.9) we now evaluate  cab(w, z) to ob ta in  

[-(-a + b)/n + 11 (~ + sk �89 n T )  
A s~b(z, w, r) = n exp( -- i~z) 

1 1 

I]  S ( z, nz ) 
x k= o,,,~h (3.10) 
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This gives the factorized Belavin S matrix. Since multiplication of each 
Boltzmann weight by a common factor does not affect the statistical 
mechanics in any significant way, we will often replace S "b by f(z)sab(z) 
where f(z) is some function independent of a and b. In particular, if we use 
the identity 

~ (z,n'c)=yoO (z,~) (3.11) 
k = O  L ~ A 

(Yo is constant in z), then (3.10) can be written as 

o [ ( - a +  b)/" +~] (z + w,n~) 
Sab(z, w, v) = f ( z )  L_ Z (3.12) 

J L 

where f(z) has the obvious definition. This final form of the Belavin S 
matrix is particularly simple and it shows the dependence of the weight S "b 
on a and b. From this product representation the identities 

S'b(-w, w, ~)= -Sba(-w, w, ~) 
and (3.13a) 

Sab(w, w, ~) = S -u ~(w, w, ~) 

follow. If P12ei| ej| then (3.13a) in terms of the S matrix becomes 

S ( - w , w , r ) = - S ( - w , w , T ) P  12 and S(w,w,r)=pX2S(w,w,r) (3.13b) 

An important limiting case of Baxter's eight-vertex model is the six- 
vertex model (see Ref. 15 and references therein) obtained by passing to the 
limit r ~ ioo (or q ~ 0). Here too, the q --* 0 limit of the 2 ,  Baxter model 
will be important as independent methods of nested Bethe ansatz are 
available. (s'~9) We record here the q ~ 0  limit of the Belavin 
parametrization: 

sin 7r(z + w) 
S~176 w, ~) ~ n e x p ( - r d z )  

sin 7rw 

S a ' ~  avaO (3.14) 

S~ 2~i - w s i n e w '  

S~ W, ~) --,0, a r  b e 0  
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Let z' = z + win + �89 + �89 r' = n'c, a' =- -a /n ,  then if we define 

S b [ ; '  1 ( z ' , r ' )=S-~b(z ,  w,r )  

(3.6) becomes 

S b l ; ' ] ( z ' + r ' , z ' ) = e x p ( - i r c n r ' - 2 7 z i n z ' ) S b l ; '  ] 

[o] I;] S b (z '+ 1, z ' )  = exp(27zia') Sb (z', r ' )  

(Z'~ ~') 

(3.15) 

If M~[~I] denotes the complex vector space of nth-order theta functions of 
rational characteristics a',  b', then it is well known (~4) that dim M.[g ' , ]  = n 
and a basis is given by ~' ' 9[ (b ,+~/~](z ,  r'/n), c~ =0,..., n -  I. Hence (3.15) is 
the statement that ~' ' Sb[o](Z,r ' )eM, ,[~o '] for every b = 0  ..... n - 1 .  The 
Belavin representation (3.4) becomes 

S b (z', z ' )=  c~'bO e/n z', (3.16) 

where 

Ca, b =--- 09 (Ia]( - b~ 0 c~ / n tl , c~=0 ..... n - I  

Since a' O[~/n](z, r ' /n)/O[f~](r l, v'/n), ~ = 0  ..... n - 1 ,  also form a basis for 
M . [ ~ ' ]  and since the matrix (f2)ij= o) -  ), i, j =  0 ..... n - 1 ,  is invertible, it 
follows that the functions ~' ' r '  S b [ 0 ] ( z ,  ), b = O , . . . , n - 1 ,  form a basis for 
M , [ ; ' ] .  

4. S Y M M E T R I E S  OF THE PARTITION FUNCTION 

Recallll 3) that  the transfer matrix T for a vertex model with M rows, 
N columns with periodic boundary  conditions can be written as 

T, , , ,  = Tr(L(cq ,  c~i)-, �9 L(c~N, ~;v)) (4.1) 

where , = ( c q  ..... aN), a'=(C~i,..., e}),  e,, :~;~7/ , and L(c~, c~') is an n x n  
matrix given by 

' - S  ~:~' ' 2, 2 ' e l  n L(c~, c~ )~.~,- ~ , e, ~ ,  
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Using (3.1) we have 

L(a, cr Z w,(I, ~)~ ' I,, 
7EGn 

and, of course, 

~, ~' E 7/n (4.2) 

Z = Tr( T M) (4.3) 

We write Z[S] to denote the dependence upon S. 
Owing to the invariance of the trace under similarity transformations, 

we see that if 
S ' = ( U |  1| 

then the transfer matrix (4.1) is unchanged and hence Z [ S ] = Z [ S ' ] .  
Likewise a similarity 

S ' =  (I@ U) S(I|  U 1) 

produces a different transfer matrix, say T", which is related to the original 
T by 

T '= (U| " | U) T ( U - I |  ""  | U -1)  

and by (4.3) we see that Z[S']  = Z [ S ] .  Thus in summary, we can state 
that for any n • n invertible matrices UI and U2 that the transformation 

S ~  UI | UzSU~I @ U21 

leaves the partition function Z[S]  unchanged. 
Now we consider some special cases of similarity transformations of 

the S matrix; in particular, those associated with the Heisenberg group H, .  
First choose U 1 ~-18. Owing to the 7 / symmet ry  

S~-~ 18 | ISI~ ~ | I = I |  I s 1S1| 18 (4.4) 

In terms of the w~'s 

I~| ISI~ 1| Z w~I~l~I~ 1 | I~ 1 = ~ ~<~'~>w~I~| I~ ' 

where we used (2.9). Hence the similarity (4.4) corresponds to 
Wc(k--) (~O (~'fi)W~. 

The second type of similarity we will consider arises from the choice of 
new generators for the Heisenberg group H,.  Let A ~ SL(2, Z) and define 

S A = ~ w~I~ | (I~) 1 (4.5) 

where I A is given by (2.10) and A = (~2 ~' f12)" 



324 Richeu and Tracy 

Using (2.11) we conclude 

S A = UA | UA SUA 1 | UA 

so that Z [ S  A] = Z [ S ] .  But using I~ =co ~ 1  e~/+~2(~ ~ t+~I~+~IA  ~ it 
follows that I~ |  1= IA~| and hence, 

sA= E Wr174 E WA-'r162174 1 
r r 

This allows us to consider the similarity as an action on wr namely, 
S~--~S A-~ corresponds to we ~ WAG. We now have the following: 

T h e o r e m  4.1. Let S be any Y~ symmetric matrix, Z[S]  the 
corresponding partition function on a finite lattice with cyclic boundary 
conditions. Write 

S= ~ wr162 1 
~eG~ 

then Z[S]  is invariant under the transformations on S given by 

W~ ~---> C0 <~"Y >W~, ~: E 7/2 

w~ ~ WA~, A ~ SL(2, :_) 

The 7 depends only on its coset in 2/nZ x 2 / n Z =  2~ x 7 / =  G,, and A 
depends only on its coset in SL(2,7/) /F(n)~SL(2,  2~), where F ( n ) =  
{A E SL(2, 7/) I A = I m o d  n}, the principal congruence subgroup. Further- 
more, the action of SL(2, 7/) normalizes the action of 2 2. 

Proof. The invariance of Z[S]  has already been demonstrated and 
the first part of the second statement is obvious. The second part {s almost 
as clear, it depends only on the observation that for any G E F(n), 

= / 1~1 ~ 1 ,  \ I~ = h~g ~2 = h, I/~ = hr ~2 = g, G 
\ 

so I?--  
As for the last statement, what we wish to show is that for any A 

SL(2, 7/), 7 ~ Z2 that the action of A i followed by the action of 7 followed 
by the action of A is equivalent to the action of some 7' on w~. Specifically, 

W~F'~ WA-I ~ --)" (.o~A-I~-'Y)WA-I~'(~O (A I~'7}W~ 

Since ( A - I ~ , 7 ) = ( ~ , A ~ : ) ,  7 '=A7.  | 
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As a generalization of the weak-graph duality we have the following: 

C o r o l l a r y  4.2. The partition function Z [ S ]  is invariant under 

s a b ~ - + L  E S-YlY20"){(a'b)'Y) 
1l y~Gn 

Proof. Choose A = (  ~ ~) which corresponds to z - + - 1 / z  in the 
previous theorem. Then Z [ S ]  is invariant under 

We = W(~1,~2 ) k--* W(d2" -~1) 

In terms of the Boltzmann weights 

s a b  ~ E 

71e Zn 

= 2  
yI EZn 

1 
= -  ~, 

Ill 
y~Gn 

W(-a,yl)(D by1 ~ 2 W(),I,a)(D byl 
Yl ~ Zn 

)'2 E Zn 

S--7172Ct.) <'?,(a,b) ) 

Let A denote any I~ with 2~ = 0, c~ 4= 0. This is possible only if n is even 
and if e = (0, n/2), (n/2, 0), or (n/2, n/2). Following Ref. 12 we introduce for 
N even 

and 

P o = A | 1 7 4  

P e = I | 1 7 4  

" | 1 7 4  

�9 | 1 7 4  

(N-fold tensor product). Then we have the following: 

k e m m a  4.3. 

Po TPe = PeTPo 

Proof. Define the n x n  matrices R'(e, ~'), R"(cq c~'), c~, c~'eZ, by 

R'(~, c~')~.~, = ( I |  ASA | I)~:f 

and 

R"(~, ~'),.~, = (a | ISZ| A )~':' 

822/42/3-4-6 
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Then a calculation shows 

and 

Now 

Richey and Tracy 

12~z ( 5~ (Po TP,)~,, = (eJ='=2) u/2 T r ( R ' ( c ~ , ,  c~;) , ,  ~ 2, c ~ ) . . .  

R'(O~N- I, O;N--1) R"(O~N, O~N)) 

(P~ TPo).., = (eZ'~2) N/2 T r ( R " ( ~ ,  ~'1) R'(c~,  c~)-" - 

Rtt(O~N 1, O~v- 1) Rt(~N, O~N)) 

A|174174  I(I|174 

=A| I(I| I)S(I |  

=A|174 '| ~,~2 

=(I| 1@1) 

= (I| S(A | 

that is, R'(~, ~') = R"(~, ~'). | 

An important consequence of the preceding proof is the following: 

C o r o l l a r y  4.4. The transformation on T 

T~---~ Po TPe 

is equivalent to the transformation on S given by 

S~--~A|174 ' )S( I |174  I(A| S(A-t|  

This leads to the following: 

P r o p o s i t i o n  4.5. The transformation on T given in the above 
corollary (or the equivalent transformation on S) preserves the partition 
function assuming M and N are even. 

Proof. 

ZES] = Tr (T  M) 

= Tr(Po TPeP~ TPo"" P~ TPo)( + 1 )~t 

= Tr((PoTP~) M) | 

Thus we have the additional symmetry. 
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T h e o r e m  4.6. Assume n, N, and M are even. Let A be any I~ with 
2 e = 0 .  I f w e d e f i n e S ' = ( A |  1)S, then Z [ S ' ] = Z E S ] .  

Proof. 

ZES'] = ZEI| AS'I@ A -  ~] 

= Z [ A | 1 7 4  1] 

= Z [ ( A |  I ) ( I | 1 7 4  1)] 

= Z[(A | A - ~)(I |  A -1SI|  A)] 

= z [ s ] ( + l )  MN I 

We now express this symmetry transformation in terms of the w~. Let 
/~ be such that ~ = c o ~ / ,  then 

I~ |174  1 ~ w~I~| 1 
~ G ~  

= 

~ G ~  

= ~ w~'-~o)<~"~>I~'| ;1 
~' r Gn 

Thus the symmetry on the w~'s is 

w ~ c ~ ' ~ > w ~  +~ (4.6) 

for ~ = (0, n/2), (n/2, 0), and (n/2, n/2), n even. 
For  n = 2 the above symmetries reduce to (i) every permutation of 

Woo, w01, Wlo, and wll is achieved and (ii) any two of the w~'s may be 
negated. This is an easy consequence of Theorems 4.1 and 4.6 once one 
observes SL(2, Z2)~$3,  the permutation group on three elements. It is a 
well-known result of Fan and Wu (1~ that Z[woo, Wol,Wlo, Wll] is 
invariant under any permutation of the w~'s and any choice of signs. To 
recover the Fan and Wu result it is sufficient to show that we are able to 
negate any one of the w~'s. This is done using a symmetry not available for 
n r  namely, the fact that a rotation of the lattice by 90 ~ takes an 
allowable configuration into an allowable configuration. In terms of the 
Boltzmann weights S~176 ~-~ S ~176 S ~ ~ S ~ $1~ ~-+ S 11, and S 11 ~ S 1~ which in 
terms of the w~'s is Woo, wol, Wl0 fixed and w~l~--~-Wl~. 

Up to this point the symmetries of Z[S]  have been for arbitrary w~. 
Now we examine the above symmetries assuming the Belavin 
parametrization (3.2). To begin, we consider the first type of symmetry 
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w~ ~ co <~'~>w~, c~ ~ Z 2. We slightly modify the Heisenberg operators T o and 
Sb to 

(U~f)(z) = exp [~i~2z + 2~zi~l(z + q)] f (z  + ~1 v + ~2) 

Then (U~wr = co<r and similarly 

(U~S)(z) = I~ | IS(z) I~ ~ | I= I|  I~ iS(z)I| I~ 

We write Z(z, w, ~) = Z[S(z, w, ~)]. For c~ ~ 7/2 

Z(z + cqz + ~ 2, w, z)=exp[-irccFMNv-27ricqMN(z+tl)] Z(z, w, z) 

The SL(2, Z) symmetry is 

where A = (~ ~) e SL(2,/7) and 

;tA(Z, W, Z)= exp [i~ ~,(/31m %/3,~ +/32/3~ 1 
z + i l l [  z= + 2z (w/n ) ] ) l  

The determination of 2A is involved and the details can be found in the 
Appendix. In terms of the S matrix 

z w ~'~+c~2~=,L~(z,w,~)SA '(z,w,~) 
S /31~-/32'/31~+/32 /3,~+/32) 

so that the partition function satisfies 

Z - + / 3 2 , / 3 1 ~ + / 3 2 , ~ ] = 2 ~ U ( z , w , r ) Z ( z , w , z )  (4.7) 

Finally, we would like to interpret the last symmetry in terms of a 
transformation on a variable. To do so, note for/3 e 2 2 

w~(z, w + fl,'c + fl2, z )=exp (-2rci ~ z) w~+/3(z, w, "c ) 

Thus for n even and /3i, /32 = 0, n/2 we see 

S(z,w+/31r+fi2, r)=ex p --2rci--~z I~ |  (4.8) 

and 

Z(z ,w+/31 ,+f12 ,~)=exp( -2~iz~MN)Z(z ,w ,~)  
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5. I N V E R S I O N  RELATIONS FOR U i A N D  Vi 

In this section we derive inversion relations for the Baxter  face 
operators U s and Vi assuming the Belavin parametrization. We assume the 
reader is familiar with Chapter 13 of Baxter. {3} We first shift our point of 
view from a vertex description to the dual spin description. The spin 
variables are indexed by the dual lattice sites and take values in 77 or d{~ 
depending on whether we use an additive or multiplicative representation 
for the group law. Figure 2 gives the n to 1 map from spin configurations of 
an " IRF model" to the 7/n vertex model. 

It is well known that a solution to the Yang Baxter equation, 

u~+ ~(z,) ui(~, + ~ )  u,+ ,(z~) = u~(z~) us+ ,(~, + ~ )  U,(zt) (5.1) 

implies the inversion relation Us(z) U s ( - z )  = n(z) id. In previous work on 
exactly solvable models there exists a rotational symmetry so that from a 
Ui inversion relation, a corresponding Vi inversion relation follows. This 
route is not available for the 2n Baxter model (for n > 2). 

For completeness we give a proof of both the U~ inversion relation and 
the Vi inversion relation. Since several authors (7'8'2~ have proved (5.1) the 
Us inversion relation is not new; howeVer, to calculate the free energy and 
order parameters both inversion relations are required. The V~ inversion 
relation given below is new. Our final results in this section are given in 
Theorem 5.6. It should be noted that all proofs of (5.1) (for n > 2) as well 
as our proofs be low are of function theoretic nature and tend to have a 
verification quality tO them. We mention that from the Us inversion 
relation and using the transformation properties of w~ we can prove the 
Yang Baxter relation. This is the route of Cherednik (8/ and though our 

8 F F 8 

2 ~ -6  /~-v 

w( r, S c~-6, ,b -  ,~ 

Fig. 2. The Boltzmann weight w(~,/~, 7, 3) for the spin configuration ~, ,8, ~, 6 in terms of the 
corresponding vertex configuration and vertex weights S}( 
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proof  is technically different than  that  in Ref. 8, we do not  include it here 
since it is similar in spirit; namely,  function theoretic. 

Recall that  (see Baxter, (3) p. 369) 

( U i ) e t , . ,  = ( 5 ( o - 1 ,  o - ' l ) . - '  ~ ( o - i _  1 ,  o - ' i _  1 )  w(o-i, o i +  1 ,  o - ; ,  o - i _ l )  

x 5 ( a , + l , o - i + l ) ' " a ( a  .... a~,) (5.2a) 

and 

( g i ) ~ - , . '  = ( ~ ( o - l ,  o - i ) " ' "  ~ ( o - i - 1 ,  o - i - l )  w(Gi 1, o-i, o i +  i ,  ( 7 ; )  

x g)(ai+l, a ~ + l ) " ' 6 ( a m ,  a'm) (5.2b) 

Thus U; acts from N E  to SW and Vi acts f rom N W  to SE. We define the 
n 3 x n 3 matrices U and V by 

g~ ,~2~ ,  = c~;l~;~w(o-2, o-3, 0-2, o-~) 
0.; ~0-'3 0-3 - 4,0.;- ~ 
O. 1 r 3 So-  2 O"1,O" 3 0- 2 

= (5 ; i  3 ;  '3 S 0.3 + O'l -- (0.2 + 0.2)'O"2 0.2 
1 3 

v~ ~ ~ ,  4 )  O-iO-263 

= a<~, a ; i  S - ( ~  + ~'~ + (0.2 + 4),0-~ 0., 

Fur thermore ,  it is convenient  to let 

v =  | g;~,, v =  | v;~ (5.3) 
r 2 E Z n 0.1,0-2 E Z n 

where U;2, V;21 are n x n matr ices 

o- 2 __ 3(0.1  + a2) -- {0- + 0. ' ) ,a '  -- 0. ( U , , ) , ~ , -  (5.4a) 

( V;~)0.0., = S (~ + o2~ + ~o + 0-'),,~ 0-, (5.4b) 

Observe  that  V;~ is a symmetr ic  matrix.  See Fig. 3 for a geometr ic  presen- 
tat ion of these operators .  Thus  inverting U and V is reduced to inverting 
U~2 and V;2 for every a~, 0- 2 E Y n "  A further reduct ion is possible by using 
(3.5) and (5.4): 

k e m m a  5.1. 

[ (i) U~2(z, w) = exp - 2~i(al  U~ w -  (o-i + o-2)~) 1 

(ii) V;~(z, w) = 21(z, w) V~o(Z + ( a 2 -  a l ) r ,  w + (o-1 + a2)r)  

for every a l ,  a2 E Z , .  
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ET s 

% 

(T I 

3 3 1  

% 

O-t/ O- a t 

Fig. 3. 

(vR  
v Gt] ~y O-t 

The face opera tors  U~ V~, U R~ , V ~ ,  

The multiplier 21(z, w) is easily determined but it will be convenient to 
calculate a different overall multiplier at a later stage. 

The next lemma gives the inversion relation for U ~ 

Lemma 5.2. 

U~ U ~  z) = n(z, w ) i d  

where 

n(z, w) = n 2 
0 (z§ O0 (-z+w,r) 

0 = (w, T) 

Proof. Using (5.4a) 

~O~ U ~ o ( - - z ) ] ~ T a ' =  E s . . . . . . .  ( z ) S  a-a',~r' a(__Z) ( 5 . 5 )  
aCZn 
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F r o m  (3.5a) 

q~,(z  + nr) = exp[ -2M(nZr + 2nz)] ~o~o,(z) 

~0~,(z + 1) = o S -  ~'~0~,(z) 

which implies q)~, has 2n zeros in E ~  with sum ( a ' - a ) r  rood A,,~. Since 
S~b(k~) is nonzero  only if k = -b(n) ,  (po~,(kr) vanishes if c r r  a ' ,  i.e., z = kr ,  
k = 0,..., n -  1 are  n zeros of q ~ , ,  a r a ' .  Aga in  using (3.5a) we see tha t  at  
z = - w  + kr,  ~0~o, is p r o p o r t i o n a l  to 

E s . . . . . . . .  + ~ ( - w ) s  " ~',~'-~ ~(w) 
a C ~Zn 

Recall  tha t  Sab(z) is zero at  z = ( a -  b ) z -  w. Thus the first factor in each 
term in this sum is zero if - a - a = a - a + k ( n )  or  - 2 a = k ( n ) .  This 
e lementary  congruence  has exact ly one solut ion if n is odd,  and  if n is even 
there are  ei ther  two dis t inct  values of a or  no values at  all for which this is 
true. In  any case there are a lways an even number  of nonzero  terms in the 
above  sum. We b reak  the sum of the remaining  nonzero  terms into two 

parts.  We do this via the cor respondence  a ~ - - , - a - k .  Thus  { a e E ,  I 
- 2 a C k }  = U)%t {ai, - a ~ - k } ,  where x =  [n /2 ]  if n is odd  or - 2 a = k ( n )  
has no solut ions  o r  x =  l-n/2] - 1 if - 2 a  = k ( n )  has two solutions.  Thus  the 
sum becomes 

+ S "'+k . . . .  - ~ ( -  w) S "'+~ ~"~'+"'(w) 

which in view of (3.13) is ident ical ly  zero. Thus  we have located 2n zeros of  

q~oo,, ~r 4=or' rood A ~ ;  namely,  z = k z ,  - w + k r ,  k=0 , . . . ,  n -  1. Since their  
sum is incorrect  we conclude  ~0o~, = 0 for a r ~r'. 

Let  o p t ( z ) - q ) ~ ( z ) .  Observe  tha t  a r a '  was not  used in de termining  
that  z = - w  + k r  are  zeros. Thus  we have loca ted  n zeros of q~. We now 
show that  the o ther  n zeros [q)o i s  not  ident ical ly  zero since q~,(0)= n 2] are 
loca ted  at  z = w + kr,  k = 0,..., n -  1. To establish this we first show ~o o is 
independen t  of or. L o o k  at  D~,(z)  = ~o~(z) - q)~,(z). D~,  has the same t rans-  
fo rmat ion  proper t ies  as q~o so has 2n zeros in A,,~. N o w  ~0~(kz) can be 
evalua ted  and the result  is independen t  of c reZn .  Thus  Do~, is zero at 
z = kz, k = 0,..., n - 1 and,  of course,  at  z = - w  + kr,  k = 0,..., n "  1. This 
again  gives 2n zeros with the wrong  sum and hence D~ , - - -0 .  Let  
q)~(z) = n(z). Thus  we have shown tha t  U~ U~ is p r o p o r t i o n a l  to the 
identity.  All that  remains  is the explicit  result  for n(z). 
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Let a--* - a - ~ r  in the sum in (5.5) to obtain 

~ ( z ) =  Z s ~ ~(~)s~'~ 
aEXn 

F r o m  this representat ion of q)o follows the t ransformation properties: 

~o~(z + 1) = ~o~(~) 

~o~(z + 2~) = exp[  - 2~zi(4r + 4z)]  ~0o(z) 

Hence there are four zeros in E2~ and they sum to zero rood A2~. We 
already know that  - w ,  - w + r  are zeros. Recalling that 
S " b ( - w + k r ,  w, ~ ) = 0  i f k = a - b  we see that qoo(w+ 2err) = 0 which, with 
independence of the a label, implies w is a zero. F rom the sum condit ion 
the fourth zero is at w + z .  It is now straightforward to check that the 
stated formula has the same t ransformat ion properties and zero set. The 
overall constant  is obta ined by setting z = 0. | 

Lemma 5.3. 

U~2(z) U~21(-z) = n(z, w) id for every a l ,  a2 ~ 2 ,  

Proof. This is immediate f rom Lemmas 5.1 and 5.2. II 

Lemma 5.4. 

V~o(Z ) V~o(- Z -  nw ) =re(z,  w ) i d  

where 

re(z, w) = n2e ~'~ 
0[�89 (z, ~)0 [�89189 ( - z - ~ w ,  ~) 

0 2 (w,~) 

Proof. Defining (p~.,(z) to be the crcr '  matrix 
V~o(Z) V ~ o ( - z - n w )  we have 

s ~ dTn 

which has the t ransformat ion properties 

qoo~,(z + nr)  = exp[  - 2~zi(nZr + n2w + 2nz)]  (0,~,(z) 

~0~,(z + 1) " ' - "  =co ~o ~,(  z ) 

element of 
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So again there are 2n zeros with sum (6-~')7:-n2wmodAn~. Since 
S~b(kf) vanishes unless k =  - b  we obtain 2 n -  2 zeros at z = kr, kr-nw, 
k = 1,..., n - 1. We claim that 0 and - n w  are the remaining zeros mod  A,. .  

Setting z = 0 in (p~,, using the fact that  sa'~ is independent of a, 
and (3.12) we see the relevant identity to prove is 

~ I -a /7  + �89 - 1)w, nr)  
~ = 0  [-~/n + ~] 

~  o L �89 (w, J 

or clearing denominators  we must  show 

a e ~ n  2 l s Z n  L ~ / 

F has the t ransformat ion properties 

F(w + ~ ) =  e x p { - 2 ~ i [ � 8 9  1)z + ( n -  1)w]} F(w) 

F(w + 1) = F(w) 

implying there are n -  1 zeros in E~. A simple calculation shows 

F ( r )  = ~, co-~( -1)ro[ -a /n+�89  0 
a e Z n  

x H O['/n+�89 'Ta--a 
l e  Zn L 

l r  - -a  

=c0  ) L�89 r ( -  1)~ Qo 

giving n zeros in E~ which implies F(w) =- O. Since (p~o,( - z -  nw) = (p~,~(z) 
we have that z = -nw is a zero, and since or' r a the 2n zeros of (p~o, have 
the wrong sum. Hence 

{p~,(z) = re(z, w) ~ ,  

where re(z, w) is independent of {r as is clear from the definition of (p~. 
Thus we need only show that rn(z, w) has the form claimed. The zero set of 
m(z, w) and (po~ coincide and they have identical t ransformat ion properties 
in z. Thus they agree up to a multiplicative constant.  We now show this 
constant  is 1. 
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In pr inc ipa l  the mul t ip l ica t ive  factor  could  be a funct ion of w. To see 
tha t  this is not  the case, we examine  the zero and poles  of m and (p~ as 
funct ions of w. Firs t ,  

(p~(z, w + nz) = ( - 1 ) n2 e x p [  - rci(n 4 - 3n2)'c - 2IrinZz - 21ri(n 3 - 2n)w] 

x ~o~(z, w) 

m~(z, w + 1 ) = m~(z, w) 

Hence the number  of zeros minus  the number  of poles  of (p~ in En~ is 
n 3 -  2n. But (p~(z, w) is zero at  z = - n w  + k z  rood A,~ which implies it is 

zero at  w = - z / n  + (1 /n ) (kr  + m2) + ml  ~, k, mx,  m2 = 0,..., n - 1 which gives 
n 3 zeros. S~'~ w, r )  has an unique  simple pole  at  w = az. So ~%(z, w) has 
poles at  w = a ~  (order  2), a = 0  ..... n - 1 .  So the zeros and  poles  in w are  

exact ly  as those of the m which has the same t r ans fo rma t ion  proper t ies  
in w. Thus ~0~ and  m agree up to a mul t ip l ica t ive  factor,  say Co(Z), indepen-  
dent  of  z and  w. 

We now replace S ~b by ~ b  .qVllZ](w, Z) S~b(z, w, z). Let 7, indepen-  = u k  I / 2 A  

dent  of w, be such that  

0 (w, z ) = ~  IF[ 0 ~- (w, n~) 
k e Z n  L 

So that  from (3.10) 

sa~  O, "s 

0 (0, m)  
k = l  L 

,'~1 C k/#,l 1_t_ �89 [ x ,~ (z, nz) 
k = l  L 

J 

I-k/,, 
1] L -J ] 

k E Z n  
k ~a - - a  

The last factor  is zero unless a = 0. Hence  

= n,~a,oe 0 (z, ~) 

Thus we have for all w 

5", g'~ w,-O g ~ 1 7 6  w, ~) 
OGZn 

= conZe~i"wO (z, z)O ( -- 
I_~_A 

and  from the special case w = 0 we conclude  that  Co = 1. 

Z -- HW~ Z) 

(5.6) 
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L e m m a  5.5. 

V~2(z) V~'2(-z - nw) = m(z,  w) id 

Proof. By Lemmas  5.1 and 5.4 

[V~21(z, w)] l = ) ~ i - ' ( z , w ) { m ( z + ( a z - a , ) z , w + ( a  1+a2) : ) }  -:  

• V~o ( - z -  nw - (~r 2 - ~l)~ - n(al  + a2)~, w + (at + ~r2)~) 

But 
m(z  + (a2 - al)~, w + (cr 1 + a2)v ) = ).2(z, w) re(z, w) 

V~o ( - z - nw + (al - a2)~ - n(a l + a2)~, w + ( al + ~2)~ 

= ~ (z ,  w) ~ ( - z - n w +  (G1-~2)~, w+ (~, + G2)T) 

=23(z,  w) V~12(--z--nw , w) 

where 2i(z, w) are multipliers of the form exp(A + Bz + Cw). 
Putt ing this together we have 

[V~21(z,w)] 1=).  l(z , w ) [ m ( z , w ) ]  ' V ~ 2 ( - z - n w ,  w) 

where 2 l ( z , w ) = 2 3 1 ( z , w ) 2 2 J ( z , w ) L 3 ( z , w ) .  We must  show ) .=1 .  The 
multiplier is necessarily of the form 

2(z, w) = 2 o exp(niA i z + 7riA2 w) 

If ~o~'~2(z, w) denotes the a, a element of V~(z,  w) V ~ ' ( - z  nw, w), then we 
have established that 

qg~'~ w) = )~(z, w) m(z, w) 

N o w  ~p~'~2(z, w) and m(z,  w) have the same t ransformation properties 
under z --* z + nv, z ~ z + 1, w --* w + n~, and w ~ w + 1 which implies A 1 = 
A 2 = 0. To show 2 0 = 1 proceed as in the proof  that  Co = 1. | 

Thus we have 

T h e o r e m  5.6.  Let U~(z, w) be the NE to SW face operator ,  Vi the 
N W  to SE face operator,  Vfi the face opera tor  rotated 180 ~ (see Fig. 3), 
and define 

0 (z, ~) 

h(z, w) 
0 (w,r) 
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then 

Ui(z, w) Ui( - z ,  w) = nZh(z + w, w) h( - z  + w, w) id 

Vi(z, w) ViR(- z -  nw, w) = n2h(z, w) h ( -  z -  nw, w) e~J"Wid 

Proof. 

but 

In view of the previous lemmas, we have 

V72( - z -  nw, w) 
V~'(~, w)= | [VT,(~, w ) ] - ' =  | 

m(z, w) 
0-1,0" 2 0-I,o-2 

0.~ ( VR"h 

(see Fig. 3). Hence 

VR~ - z - w) ~rl , r / w ,  1 
V;l (z ,  w)= | - -  Gg(- -z - -nw,  w) | 

re(z, w) re(z, w) 

Since S(z + kz), k e n~, is a multiple of S(z) [see (3.6)], we can derive 
additional inversion relations by translations in kz, k ~ nE. 

For  completeness, we state the following: 

T h e o r e m  5.7. If w~(z) is given by the Belavin parametrization (3.2) 
and Ui(z) is the NE to SW face operator  as defined in (5.2a), then the 
Yang-Baxter  (or star-triangle) relation (5.1) is satisfied for all Zx, z2 e e l .  

6. FREE ENERGY 

Using the inversion relations for Ui and Vi derived in the previous sec- 
tion and Baxter's method of corner transfer matrices, (2'3) we can derive 
inversion relations for the partition function per site in the thermodynamic 
limit, ~(z, w, 3) or K(z) for short. The reader is reminded that the method of 
corner transfer matrices has several assumptions which we implicitly use 
when applying this technique. Since we have not improved upon this 
method, we refer the reader to Baxter (2 4) for a discussion of these 
assumptions. The two inversion relations for ~c(z) are 

~c(z) rc(- z )= n(z, w) (6.1a) 

and 
~c(z) t c ( - z - n w )  = f(w,  r) m(z, w) (6.1b) 

where we are assuming that 0 < Im z < I m ( - n w / 2 )  < Im r and f (w,  ~) = 
[KZ(-nw/2, w)] / [m(-nw/2 ,  w)]. The inversion relation (6.1a) is assumed 
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to hold in an open strip containing Im z =  0 and (6.1b) in an open strip 
containing Im z = -nw/2. 

To parallel the notation of Baxter we drop the overall term 
n exp(-ircz) in the Belavin parametrization (3.10). This changes the 
definitions of n(z, w) and m(z, w): drop the factor n 2 in n(z, w) and drop the 
factor nZexp(ztinw) in m(z, w). Using (3.4) [and removing a factor 
n exp(-ffzz)  from each weight] we see that in the limit q-- ,0  and then 
w--* - ioe  that the dominant weight is S n- 1,0 and that in this limit 

Z ~ ( S n - l , ~  MN 

where 

S~'~ I2~i ( ~ - a )  z ] (6.2) 

Thus if we assume log ~c(z) has the expansion 

log ~c(z) = Lz + ~ Ck exp(2~zikz) (6.3) 
k ~ Z  

we conclude that L =  - z i [ (n -2 ) /n] .  Note that we assume (6.3) is valid 
slightly outside the region 0 < I m  z < Im(-nw/2) .  This is the fundamental 
anatyticity assumption in this method, see Baxter. (4) To solve (6.1) using 
(6.3) we need an expansion of log h(z, w). This is easily derived from the 
product expansion of theta functions: 

log h(z, w) = -~i(z + w) + k(1 - q2~) [exp( -2~ ikw)  + q2k exp(2~ikw) 
k = l  

- exp(2rcikz) - q2~ exp( -2~ikz)] (6.4) 

which is valid for 0 < Im z < I m ( - w ) <  Im r. It is now straightforward to 
solve for the coefficients Ck in (6.3). We first find that f(w, 3 )=  1 and if we 
set x = exp( - iTrw), then 

and 

x2Z + q2t X 2l Co=  
/ = 1  

(6.5a) 

for k # 0 .  These expressions are valid for O < I m z < I m ( - n w / 2 )  and 0 <  
I m ( - w )  < Im(~). 

X 2(n 1)k l+q2k(X-2(n+l)k x 2nk) 
C , =  k(1 - qZk)(1 - x  -2nk) (6.5b) 
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For  n = 2  we set z = i u ,  w =  - i2 ,  0 < u < 2 ,  so that  x = e x p ( - ~ 2 )  and 
define zB = x - 1 exp( - 2~u), qe = q2, then the sum Y~k~ z,~e o Ck exp(2rcikz) 
reduces to - ~2 ~ 3k k k ~k k=l  [-(x + q B x  ) (~B+Z~k) ] / [ k (1 - -q~ ) ( l  +x2k) ]which i s  
precisely Baxter 's  result for the eight-vertex model  (see, for example,  Eq. 
(13.7.1) in Ref. 3). The term involving Co depends on the overall nor-  
mal iza t ion of the Bol tzmann  weights. 

To  compare  the q ~ 0 limit of ~c(z, w, r)  with the results of Babelon,  de 
Vega, and Viallet (5) it is convenient  to rewrite (6.5b) as 

1 { sinh(rcikw) s i nh[ r~ i (n -1 )kw]}  
C ~ -  k(1 _ q2k) qakx-(n+l)k +X k 

sinh ( rrinkw ) s i ~ n l [ ~  

and 

C k m 1 { sinh(~zikw) 
k(1 q2k) x(n+l)~ 

- sinh(Trinkw) 
+ q2kx_k Sinh[~zi(n-1)  k w ] ~  

sinh(~inkw) J 

for k = l , 2  ..... 
N o w  use the e lementary  identities 

e ~i"k~ sinh(~z/kw) = e ~i~w sinh(rcinkw) - sinh [~i(n - 1 ) kw] 

e -'~i"kw sinh(~ikw) = e -  ,~i~w sinh(rcinkw) - sinh [rci(n - 1 ) kw]  

to write 

(~n 1) [ ~ X2k-t-q2kx--2k 
log ~c(z, w, ~) = -2rci z +  rciz + k(1 _q2k)  

k 1 

-- ~,, qZkx-2k exp(2gikz) + x?k exp(--2rcikz)] 

x k sinh [~i(n - 1 ) kw] 
- 2  ~ k ( l _ q 2 k )  sinh(7~inkw) 

k = l  

x sinh(2~ikz)(1 - x-2kq2k) 

Using the identity (6.4), the por t ion  in square  brackets  is 

0 ( w + z ,  ~) 

log - 7riz 
0 (w,r) 
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Thus we conclude 

log to(z, w ,~ )= -2~z i  ( ~ )  z 

O (z+w,z)  
+ log 

0 (w,~) 

exp(-rcikw) sinhDzi(n- 1)kw] 
2 k=l/-L k ( l_q2~)  ~ / ~  

x [1 -exp(+2~zikw) q2~] sinh(2nikz). (6.6) 

The manipulations of the above series are valid for 0 < I m  z < - I r a  w < 
Im ~. Now the q --, 0 limit of (6.6) is 

lira log ~c(z, w, z) 
T ~ i o o  

= -2~zi ( ~ n  1) z +  l~ sin ~z(z + W ) s l l l  ~W 

exp( -  ~zikw) sinh[Tci(n-1) kw] 
~ 2 /_., k k = 1 sinhO zinkw) 

sinh(2~ikz) (6.7) 

Identifying w =  -i(7/~),  "/>0, z=iu/~z, we see that (6.7) is (up to a nor- 
malization) the Babelon, de Vega, and Viallet result/5) derived using a 
nested Bethe ansatz. This verification of (6.5) [or (6.6)] in the q---, 0 limit 
is strong evidence that the analyticity assumptions in the inversion relation 
method are valid for the Z, Baxter model. 

7. S P O N T A N E O U S  M A G N E T I Z A T I O N  

The last result we will obtain is the spontaneous magnetization, M0, of 
the 7/n Baxter model in the ferromagnetic regime. As in Baxter, (3) the spon- 
taneous magnetization is reduced to calculating 

Tr(SAd(2)o)) 
M 0 - (7.1) 

Tr(Aa(22)) 

where A~(z) is the diagonal corner transfer matrix and 2 is an inversion 
point lying in the ferromagnetic region. The translationally invariant 
ferromagnetic ground state is the region where S~176 w, ~) is dominant. 
This corresponds to 

- I m  z < Im(z), Ira(w) < 0 (7.2) 
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A~(z).,. 

so that  

so that  ( w + r ) e H .  The inversion point  2 lying in this region is 2 =  
- (n/2)(w + z). We must  also require Ira( - (n/2)(w + r))  > - I r a  ~, so w has 
the restriction 

- I m z < I m  w <  - ( 1 - ! ) I m ~  (7.3) 

Since A~(O)=id [this follows f rom Us(O)=n2id] and S~b(z+n)= 
Sab(z) we have m r = 1 for every r and 

(z) 
Ad(Z)r,r, = exp 27tin r (7.4) 

where nr e Z. 
To  calculate the integers n~ we use the limits q ~ 0  (first) and 

w--+ - i c e .  Using (6.2) and the fact that  S ~  0 for b va0 we see that  Ui 
approaches  a diagonal  matr ix  with (a, o) entry 

S ~ 1 - 2 ~ 1 7 6  w, ~) 

which is approach ing  exp{2zc i [ � 89  1-2as+ai+l)] (z /n)}  where we 
write 2 for the representat ive of x ~ 7/ in  7/,. Since A can be writ ten as the 
p roduc t  of the Us matrices,  A also is a d iagonal  matr ix  in the limit q -~ 0, 
w ~ - i c e .  Note  that  these limits are consistent with (7.2) and (7.3) since 

--. + ice  first. Aa(z) can now be found by normal iz ing Ui so that  the 
maximal  entry (U~)~ is unity. Fo r  I m z < 0  this occurs when 
a~_ ~ - 2a~ + az+ ~ = 0; that  is, a = 0 in (6.2). This illustrates the dominance  
of S ~176 in this region. Thus 

= e x p  -2rci ~ ( i - 1 ) ( a i _ 1 - 2 a ~ + a s + l )  (7.5a) 
i = 2  

m + l  

n ~ = -  ~ ( i - 1 ) ( a i _ x - 2 a i + a i + l )  (7.5b) 
i = 2  

Arguing as in Baxter  (3) we expect that  if o is the spin set 
corresponding to the rth largest diagonal  element of the finite A, then since 
there is an integer j, independent  of m, such that  

c r i=s  for i > j  (7.6) 

we expect limm ~ ~ A o~ to exist and to approach  

Ad(z)~.~ = exp -- - -  z i#i 
/'/ i = 1  

(7.7) 

822/42/3-4-7 
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where # i = ~ T i - 2 f f i + l  +o-i+ 2. Note that the transformation from any a =  
(at ,  a2,...) satisfying (7.6) to the set of # =  (/z~, #2,...) satisfying # i = 0  for i 
sufficiently large is one-to-one and onto. Equation (7.6) is valid for # 
without the restriction #~=0 for i sufficiently large if we interpret 
(Aa)~ = 0 when Z i/l~ = o0. For  the spin set labeled by/~, the ground state 
picked out is the one with all spins in the state co o = 1. The labeling is such 
that 

so for any m 

],{ k ~'- ].l k + l "J7 " ' "  -~ ],{m m f f  k - -  f f  k + b k = l , 2  .... 

0-1 = ( # 1 - - ~ 2 ~ - . . .  ~ - # m ) - - ~  (~2  ~-]23-.  t- . , .  ~ - ~ m ) ~ - . . -  

= #1 -~ 2/'t2 + " ' "  k l l k  + " ' "  

Again identifying the spins as nth roots of unity we see 

co~l=co~l+~,,+~+ (co2),2+~o+2+ ...(co~),~+~o+ 

Define 

S = g @ g : |  ""  |  

(7.7) 

where g is the Heisenberg matrix (2.7). Then the (#, #) entry of S is exactly 
(7.7). Let D ( x )  be the n x n diagonal matrix with Dii(x  ) = x  ~, where x =  
x ( z )  = e x p [ ( - 2 r c i / n ) z ] .  Thus Ad(z )  can be written as 

since 

A d ( Z ) =  D ( x ) |  D ( x 2 ) |  "'" | 1 7 4  ""  

A d ( Z ) ~  = X ~ § 2~2 + ... 

We can now evaluate (7.1) to obtain 

1 - exp [2zci(w + r)k]  
M ~  f i  l - - e ~ 7 + l - - ~ ) k ] ]  

k = l  

=exp  ]~n r l ( w + z + l / n  ) '  ( w + r ) e H  

where t/(r) = exp(~ir/12) fI~= 1 [1 - exp(2~ik~)], ~ �9 H. 
Because we are working with an n-state model, the quantities 

Mo,k = (~ro k } 

(7.9) 

(7.10) 

(7.11) 

(7.8) 
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are also of interest. Replacing S by 

S k = gk | g2k @ . . .  

in the above analysis we obtain 

Mo, k = exp \12n / r l (w  + ~ + k/n) '  ( w + r ) e H  (7.12) 

We conclude this section with several comments concerning (7.10) and 
(7.12): 

(i) For n = 2, (7.10) reduces to Baxter's spontaneous magnetization 
Mo as given by (13.7.21) in Ref. 3. The presence of an additional r in our 
(7.10) is related to the fact that Baxter used a symmetry argument to 
obtain a slightly different parametrization of the Boltzmann weights in the 
ferromagnetic region [see (13.3.9) in Ref. 3]. 

(ii) Let M e  GL(2, 2)  be defined by M = n 1 (o ,) so that Mr  = r + 1In. M 
is a transformation of order n 2. Define FM = Fc~ M- 1 FM,  where F is the 
modular group, i.e., SL(2, 7/)/{ _+ I}. Then we are interested in the function 

~(M~)  
fM(~)  - 

Since ?/24(T) is a modular form of weight - 1 2  for F, it follows that 
[ fM(r)]  24 is a modular function for FM. More details concerning this can 
be found in Schoeneberg (Ref. 18, Chap. 6). 

(iii) Using Schoeneberg's theory of generalized Dedekind eta 
functions (see Chap. 8 of Ref. 18), one can show that Mo,k is expressible as 
ratios of products of t/g(r). For example, for n = 3 

l~ l - - ~ - - ~ ~ ) j  ~/n(3r) '  co=exp 
k = l  

The advantage of such a representation is that it now follows from 
transformation properties of t/g(r) that Mo,~ raised to a sufficiently high 
power (this power is computable) is a modular function of level n; that is, 
(Mo,k) p for some p ~ N is invariant under F(n). For n = 2 this is the familiar 
result that M o = ( 1 - k 2 )  1/8, k = k ( r )  the elliptic modulus, raised to the 
eight power is a modular function of level 2. Thus the Z n Baxter model 
order parameters are expressible in terms of modular functions of level n, a 
result that was suggested from the analysis in Ref. 20. 
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(iv) The identity 

~u,=o,1....,n-1 q i=l i#i i=1 

and other similar identities are a recurring theme in exactly solvable 
models. In fact, based only on an examination of allowed configurations, 
this identity was predicted to appear in n-state vertex models by Jimbo and 
Miwa.(n) 

(v) Even though we are in an unphysical region, we use the elemen- 
tary probability formula 

n 1 

E(ak) = ~ Prob(a~ = cokl) cokt 
/ = 0  

n I 

= ~ Prob((r = cok) cokt 
l = O  

Inverting this relation and using (7.10) and (7.12) we find 

,~ 1 ( l_~q'  .'] 
1 ~ co kj~_l_coj,qZj Pr~ = cok) = n j=o l=1 

1 1 n 1 ~ ( q )  
= _ + _  ~ co kJ (7.13) 

n n J= 1 ~9(coJq) 

Recalling that 1/~(q) = l ~ l  1/(1 - q~) = Zm>o p(m) qm, a simple 
calculation gives the result quoted in the Introduction. The q ~ 0 and q ~ 1 
limits follow from (7.13). 
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APPENDIX  

Lemma. Let 

w~(z, w, z) = exp(--~ziz) 

0 (z+w,~) 

0 (w,z) 
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then 

w~ , , =exp  7ci z + wAx(z, w, v) 
Y Y J )  

where A e SL(2, 7/), A = (~ cd), x = a~ + b, and y = c~ + d. 

Proof. This is best done by first constructing some 
functions defined by 

FA,c,(Z,W,'r) e x p { ~ i c y l z + w + l  (L-~- )12  } = - wA~(yz, yw, "c) 
Y 

GA,~(z, w, r) = exp[rc i (d-  c - 1 )z] FAs,(z , w, z) 

We will show GA,~(z, w, z )  = c o n s t  x w~(z, w, x /y ) .  As usual we check trans- 
formation properties: 

F~,~(z + 1, w)=  co ~2 e x p [ -  rcicd] FA,~,(z, w) (A1) 

For the other generator, let z ~  z + x/y = z + z': 

F A , ~ ( z + z ' ) = e x p ( ~ i c y { 2 [ z + w  y \  2+l(z+l']jl'y+)Z} ) x  2 

exp{ 
x co<A~'X>FA,~(Z ) 

(Aa, x )  = (a,  A - I x )  = --~2" The rest of the multiplier becomes 

exp { ~i[2(z + w ) ( c x - a y ) ] - a 2 ~  +cx (~ + l ) + c x 2 - a ( ~  + l Y 

Use c x - a y  = - 1  and simplify further to get 

e x p { - 2 ~ i l z + w + l ( z + l ~ y \  2 ] j j e x p I - ~ i ~ ( a 2 y r - c x 2 ) ]  

auxiliary 



346 

Now we rewrite the last exponential using 

a2yz  - c x  2 = a2(cv + d)z  - c (az  + b)  2 

= a 2 dr  - 2abcv  - cb 2 

= a ( a d -  bc)z  - abc~ - cb 2 

= az  - ab(c'c + d)  + b ( a d -  bc)  

= az  + b - ab(cv  + d)  

= x  + a b y  

Thus the net multiplier for FA,~(z) is 

exp -~zi - 2 ~ i  z + w + -  co ~ 2 e x p ( - ~ i a b )  (A2) 
Y 

Remembering that x / y  = ~', we have 

w~(z + r', v') = exp - ~ i r ' -  2~zi z + w + ~ ) J  co ~2w~(z, ~') 
(A3) 

w~(z + 1) = co~lw~(z) 

Let us now consider three cases (I) ab, cd  even, (II) ab even, c d  odd, and 
(III) ab odd, cd  even. Note that both ab and c d  cannot be odd. In each case 
we will show G~,~ has the same multiplier as (A3). 

o r  

o r  

(I) We will show 

z +  1 = x +  y + 2 m l x + 2 m 2 y  

m l ,  m 2 ~ 7 /  

�89 - a - c ) ~ + t ( 1 - b - d ) = m x x + m 2 y  

k~z + k  2 = m ~ x + m 2 y  

That is, we need to solve 

Richey and Tracy 
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This has the solution 
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m 1 = � 8 9  1) 

m 2 = � 8 9  b -  1) 

It  is easily seen that  a - b - 1  and d - c - 1  are even and hence we can 
write 

FA,~(z + z ' )  = exp [ -- rci(d- c - 1 ) ~'] 

x e x p [ - - z t i ( y ) - - 2 ~ i ( z + w + ~ - ) ] F A , ~ ( z )  

So in case (I) GA,~(z, "r) and w~,(z, "c') have the same t rans format ion  proper-  
ties in the z variable. 

(II)  We will show 

l { z + l ~  1 ( y )  �9 7 
y \  2 / = ~  + m l  + m 2 ,  m l , m 2 ~ Z  

This is accompl ished for 

m l = � 8 9  

m 2 = � 8 9  d - c e v e n ,  a - b o d d  

Thus  
F A,~(z + ~') = exp[  -- 2~ziml"c' ] exp [  -- Trir' -- 27ri(z + w + �89 F A,~(Z ) 

FA,~(Z + 1) = --~0 ~2FA,~(Z ) 

Again we see GA,~ = e x p [ z t i ( d - c -  1)z] FA,~(z) has the same multipliers as 
w~(:). 

( I I I )  This t ime 

y = 2 y + m S y  

where 

m s : � 8 9  1) 

m2 = �89 - b), ms,  m2 ~ Z 

As before, it is now easy to GA,~ agrees with w~ in the z variable. 
It  is also easy to see GA,~(z) and w~(z) have the same zeros in the E~,. 

Thus they can only differ by some c(w, ~). Setting z = 0, we find 

c ( w , r ) = e x p { z t i c y [ w + l ( r + l ) ] : ~  
y \ -Y - /3  J 
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showing 

Now simple algebra and the change of variables z ~ z / y  leads to the 
expression in the statement of the lemma. | 

Remark. The above proof is motivated by the proof of the functional 
equation of O(z, r); see, e.g., Mumford, (16) p. 28. 

NOTE A D D E D  IN PROOF 

In C. L. Schultz, thesis, SUNY at Stony Brook (1982, unpublished), 
the q ~ 0 limit of Theorem 5.6 was conjectured. 
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